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Abstract

We describe how one can perform a single resonance
calculation using the single resonance map and the co-
moving map. Again we emphasize that all the concepts of
this paper have been implemented for the most complicated
situations using the Differential Algebra Package of Berz. In
theory, it is possible and d~sirable to do similar
calculations on fitted maps (a la Warnock) with fitted
canonical transformations, unfortunately the tools based on
fitted maps are not yet as versatile as DA-based tools.
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Warning
The word convergence should no be taken in its purest
mathematical sense throughout this paper. All the series produced in
this paper are probably asymptotic. By convergence we mean to say
that the asymptotic series is still well behaved as we increase the
order of the perturbation to its chosen maximum value.

~

In pre-vie-uspapers [1,2], we have argued that all the usual conc~pt
of single particle dynamics in a periodic Hamiltonian can be obtained

. from finite time maps. We have argued that both thinking and -

computing using finite time maps is a more efficient approach to
accelerator physics than the usual Hamiltonian theory for two
obvious reasons:

1) Circular rings are made of very discontinuous Hamiltonians in
the time-like variable "s".

2) We are interested in the motion at a finite number of surface
of section (or locations in the "s" variable).

Hence it is most efficient to define the ring mathematically as an
ordered set of maps between the locations of interest.

From a computational standpoint, this view has been reinforced by
the development of the DA-Package by Berz [3]. Given a tracking
code, one can automatically get the exact coefficients of the Taylor
series map around any orbit. This map can then be analyzed with Lie
methods using a program also based on the DA-package of Berz. We
have described this in detail in reference [4]. In particular, we
hinted at the possibility of studying a "single-resonance" map. In
this note, we will describe how one gets from a 2N phase space the
N pseudo-invariants in a system dominated by one resonance. As
usual, the claim is that all calculations can be done to arbitrary
order with DA-based software and that the results can be compared
with the actual tracking code which produced the map.
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2. The sinQle-resonance map

We start with the usual Taylor series expansion:

Zf.- T1 " z .+ T2" . Z . Z . + +Tno-1.. z . Z. +
1- IJ J IJ1J2 J1 J2 ... IJ J(" Jno-1 ...

z = (q,p) (1 )

We know that a symplectic map M acting on functions of phase
space can be found from equation (1). For example, it is possible to
write M as a factored product (Dragt~Finn) [5]:

M = exp(:f2:) exp(:fS:) exp(:fno:) (2)

such that

zf= M z = T1 ijZj+ T2ij1j2Zj1Zj2+"'+ Tno-1 ijZj1,,,Zjno-1 + O(llzllnO)(S)

This factorization is not really useful except for the fact that it
assumes no special properties of the map M. Here however, we will
assume that M is dominated by one resonance and that between the
location of this resonance in action and the origin there appear to be
no resonances (as depicted on figure 1). Let us call this region of
phase space B . Within B, one can attempt the following
transfo rmatio n:

M= A-1 RA+...O(llzllnO) in the Taylor series

where R= exp(:-Jl.J+ D(J):)

and A=exp(:Fno:) ...exp(:FS:) A2"" (4)

The computation of A from a DA-map has been described in detail in
reference 4. It should be said that A is bound to diverge somewhere
inside the domain B. If we restrict ourselves to cases where A

diverges at aB, we can introduce the transformation Ar such that:

M= Ar-1NAr

3
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where

N= exp(:-J.l.J:) exp(:T 3:) exp(:T no:)

Ti= Di(J) + L Aij,klj,k>
j-k=A.m

AEZ (5)

Ij,k> = (h+ 1)h (h-'1 )k1 ... (h+ N)jN(h- N)kN ,

with h:tj= qj :t i Pj . (6)

The vector m is the defining vector of the resonance:

m .J.l(J)= P p= integer (7)

Notice that the map N retains all the resonant terms.To the extent
that the divergences in equation (4) are due to the small
denominators in A which are produced by the Ij,k> terms with j-
k=Am, the map N is therefore well behaved.

In addition the single-resonance map N is "closed". By this we
simply mean that any nonlinear .manipulation on N will always
produce a single-resonance map. This is true because the set

8m = { Ij,k> I j-k=Am ; AEZ} (8)

is closed under Poisson bracket.

The particular form of N allows for the immediate computation
of N-1 invariants. Consider an arbitrary linear combination of the
actions Jj:

la= a.J (9)

Let us compute the Poisson bracket of la with Ij,k~:

5
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[a.J,Ij,k>] = {i(j-k).a} ILk> =iAm.a ILk> i=(-1)1/2 (1 0)

From equation (10) and the equation for N, we conclude that if
m .a=O then la is an invariant of the map N. Since there are N-1

vectors orthogonal to m, N has N-1 invariants of the type la. The

corresponding invariants Ka of the map M are given by the usual
prescription:

Ka = Ar-1 la (11 )
-~. .- ~. -~-

4. The co-movinQmap Nc

As it is done in Hamiltonian theory, we can now introduce a co-
moving phase <Pc:

-
<Pc = m.$ (12)

In fact using the new N-1 invariants, we introduce a new set of
angles and actions:

-
~. - a i Ji\ . K. - ai J'V1+1- .'t', 1+1- . with i=1,N-1 ,m .ai= 0, and Ilai.II=1

<1>1=<Pc = m.$ K1= m.J/llml12 (13)

Using the co-moving action K1 ,we construct the co-moving map Nc:

Nc = exp(:p21tK1:)N

= exp(:p21t K1-Jl.J:) exp(:T3:) exp(:Tno:) (14 )

The map has Nc has two fundamental properties:

i) It has the same invariants in 8 as the map N.
ii) The map Nc can be written with a single exponent which is still
invariant in a region extending beyond the domain B.

6
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Proof of i)

We must evaluate the canonical transformation 8 such that:

N= B-1 R8 where R = exp(:-Jl.J+ D(J):) (15)

Lemma

exp(:p21t K1:) Ij,k> = Ij,k> if lj,k>E 8m (16)

Using equation (10) and the definitio-n-oT K1:

exp(:p21tK1:) Ij,k> = exp( i p21tm.(j-k)/Ilm 112) Ij,k> . (17)

but since lj,k>E 8m there exists an integer A.such that j-k=A.m.
Hence equation (17) simplifies to

exp( i p21t m .(j-k)/llmI12 ) Ij,k> = exp( i p21t A.) Ij,k> = Ij,k>' (18)

This proves the lemma.

Going back to equation (15) and multiplying it by exp(:p21t K1:), we
get:

exp(:p21t K1:) N = exp(:p21t K1:)8-1 RB

~ Ne = exp(:p21tK1:) 8-1 RB

~ Ne= exp(:p21t K1:) B-1exp(:-p21t K1:) exp(:p21tK1:) RB (19)

However, using closure of 8m ' we conclude that the map B-1

contains Lie exponents in 8m only, hence, by application of the
lemma, we obtain the final result:

where Re

N= B-1 ReB

= exp(:p21t K1:) R = exp(:p21t K1-Jl.J+ D(J):) (20)

The N pseudo-invariants around the origin are given by

7



Ii = 8-1Ki (21 )

For i=2,N, we have simply Ii = Ki. For i=1, the invariant diverges

again at the boundary aB.

Heuristic discussion of ii)

Ignoring the divergence of 11' let us write N c as a single exponent:

Nc= 8-1 R 8c =exp(8-1 :p21t K1-J.L.J+D(J) :B)

=exp(: B-1 {p21t K1-J.L.J+ D(J)}:)

=exp( :-H( J;<1»:)

- ~ -

(22)

The pseudo-Hamiltonian H(J;<1»is in the set 8m. To see why

H(J ;<1» might be a good invariant beyond aB, we need to express the
map Nc of equation (14) using the co-moving actions and angles:

p21t K1-J.L.J = (p21t -m .J.L) K1- L J.L.aiKi
i=2,N

(22)

Presumably, the zeroth order tune J.Lis not very far from resonance
condition:

(p21t -m. J.L)= e « m.J.L (23)

Hence, the operator Nc of line (14) can be rewritten as

Nc= exp(: eK1- L Jl.ai Ki:) exp(:T3:) exp(:Tno:)
i=2,N

(24)

If we try to rewrite (24) as a single exponent using the Campbell-
Baker-Hausdorff (CBH) formula, its convergence will be controlled
by the parameter e. In the original map N, the parameter in front of
K1 was -m. Jl ; a parameter assumed to be in the range of p21t and

8
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therefore restricting the convergence of the CBH formula within B.

However, there is a more geometrical reason to expect H(J ;<1» to
be a good invariant beyond aB. Geometrically, the factor
exp(:p21t K1:), in equation (14), takes a point propelled forward by N
and brings it back in the neighborhood of the initial condition. At the

resonance, the angles <t> do not occupy the entire open set (O,21t)N,
but are congregated into clumps or islands. The map exp(:p21t K1:)
prevents a phase space point from leaving a given island. Hence the
tune of the map Nc drifts from nearly zero at the origin to zero at
the island and away from zero beyond the island. This type of motion
is topologically compatible with the motion produced by a time-
independent Hamiltonian. Therefore, the small denominator
diverg~nces in B are cancelled by the terms proportional to the
small numerator £ in equation (22).
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